ATM SVC Signaling Stack : Implementation Guidelines

Nishit Narang and Sumit Kasera

[image: image1.wmf]ATM Network

U1

N1

U-

UNI

N-

UNI

SETUP

N6

U6

U-

UNI

N-

UNI

SETUP

Source

Destination

Abstract: ATM is a Virtual Circuit based technology and requires establishment of an end-to-end connection prior to data transfer. This process of connection setup is done using the procedures of signaling. Both ITU-T and the ATM-Forum provide standards for this purpose. This paper provides some insight into the ATM SVC Signaling standards and its implementation. To achieve this end, this paper is organized as follows. Section 1 provides a brief overview of the ATM signaling. Section 2 details about the relevant ATM Standards. The following section talks about the inherent complexities in the ATM standards. Section 4 provides implementation guidelines for the ATM SVC Signaling stack. It also provides for a mechanism to handle some of the complexities mentioned in section 3. Section 5 suggests certain modifications to the standards to make the implementation simple and efficient. Finally, Section 6 concludes the paper.

1. Introduction

Signaling procedures in ATM are used to setup, manage and teardown a Switched Virtual Circuit (SVC). These procedures are applied both at User Network Interface (UNI) as well as Network-Network Interface (NNI). The UNI is the interface between an ATM end station and the ATM network, while NNI is the interface between two ATM network/switches. This paper restricts its focus to UNI signaling.

[image: image2.wmf]IE Type

Offset

IE1

Off1

IE2

Off2

IEn-1

Offn-1

IEn

Offn

M

E

S

S

A

G

E

Figure 1: U-UNI and N-UNI

ATM UNI signaling uses a special signaling virtual channel specified by a VPCI value of 0 and a VCI value of 5. The UNI is referred to as either a public UNI or a private UNI, depending on whether the ATM network, to which the end station connects, is a public network or a private network. The UNI (public or private) itself has two parts: the User Side of UNI (or U-UNI) and the Network Side of the UNI (or the N-UNI). This is shown in
Figure 1
.

The ATM signaling layer (layer 3) uses the services of the underlying Signaling AAL, abbreviated as SAAL. SAAL provides the functionality to reliably exchange signaling messages with peer entities. The ATM signaling stack is as depicted in Figure 2.

Figure 2: ATM Signaling Stack

Each signaling message exchanged between peer entities consists of Information Elements (IEs) that contain signaling-related information. This includes the called party address, the calling party address, the quality of service (QOS) characteristics, etc. Once an SVC is established, it remains active during the period of data transfer. After data transfer is complete, signaling procedures are used to teardown the SVC.

2. ATM UNI Signaling Standards

Most of the work on ATM Signaling standards has been done by two bodies, namely the ITU-T and the ATM Forum. The primary signaling standards relevant for the discussion in this paper (and for implementing the ATM SVC stack) are the ITU-T's Q.2931 and Q.2971. Q.2931 specifies the signaling procedure for setting up of an ATM point-to-point connection. ITU-T defines the point-to-multipoint signaling procedures in its standard number Q.2971.

ATM Forum's UNI 4.0 uses Q.2931 and Q.2971 procedure as its base and suggests some improvements over them to describe the procedures for both point-to-point and point-to-multipoint signaling in ATM. Besides these three standards for signaling, also important are ITU-T's Q.2961 and Q.2962. Q.2961 includes the facility to provide additional traffic and QoS parameter indications. Q.2962 describes the process of negotiation of traffic and QoS parameters during call setup. Table 1 provides a summary of all these standards.

Table 1: ATM Signaling Standards

Standard Number
Standards Body
Description

Q.2931
ITU-T
Point-to-Point Signaling in ATM

Q.2971
ITU-T
Point-to-Multipoint Signaling

Q.2961
ITU-T
Additional Traffic/QoS Parameter Indication

Q.2962
ITU-T
Traffic and QoS Parameter Negotiation

UNI 4.0
ATM Forum
Point-to-Point and Point-to-Multipoint Signaling

3. Complexities in ATM Standards

ATM Standards, in their current form, have many inherent complexities that can be done away with, or simplified in some respect by means of alternate procedures. This section talks about some of the complexities in the ATM standards. The subsequent sections of this paper would then discuss about the implementation procedure to handle such complexities and also provide suggestions to alleviate the complexities.

A signaling message in ATM is composed of multiple Information Elements (or IEs) in the TLV (Type, Length, and Value) format. A message may consist of both mandatory and optional IEs. ATM standards place no restriction on the order in which these IEs may appear in a message. As specified in the specifications, variable length Information Elements are allowed to appear in any order within a signaling message. This places a significant requirement on the module processing the message, as the presence or absence of an IE cannot be reported unless the entire message is parsed once. In many cases, the absence of a mandatory IE in a message is a serious error condition, and the message has to be ignored without further processing. However, since there is no particular ordering of IEs in the message, the entire message has to be parsed even if it were to ensure that all the mandatory IEs in the message are present.

To add to this problem, interpretation of IEs within a message is not completely independent of each other. As an example to this, consider the Broadband Bearer Capacity and the ATM Traffic Descriptor IE in a SETUP Message. The Broadband Bearer Capacity IE has a sub-field, called the ATM Transfer Capacity, which specifies whether the service to be supported is ABR, CBR, VBR, etc. Depending on whether it is ABR or non-ABR, the sub-fields in the ATM Traffic Descriptor IE are different. This means that before the information in the ATM Traffic Descriptor IE can be interpreted, it must be known beforehand whether the service to be supported is ABR or non-ABR. This can only be known by decoding the Broadband Bearer Capacity IE before the ATM Traffic Descriptor IE, and interpreting the value in the ATM Transfer Capacity sub-field. Since the Broadband Bearer Capacity IE is not guaranteed to precede the ATM Transfer Capacity IE in the SETUP message, the dependency between these IEs add to the processing complexity. In fact, ATM Forum’s UNI 4.0 provides a list of permissible combinations for some of the connection-related IEs [Annex 9.3, UNI 4.0].

Apart from these complexities, ATM SVC Signaling also has very complex error handling procedures. Each IE in a Signaling message has a 3-bit field called the IE Action Indicator. If set, this field indicates the action that has to be taken if an error is encountered while processing the IE. Currently, there are five different interpretations of this field, with different orders of priority. If, however, this field is not set, then the action to be taken depends upon the type of the IE, i.e. whether the IE is a mandatory IE, non-mandatory IE or an unrecognized IE. However, this doesn't cover all the possible cases. Specifically, there might be multiple IEs that are in error within the same signaling message, and with their IE Action Indicator field set. In such a case, the action that is to be taken depends upon the highest priority action indicator found amongst all IEs in error. In the worst case, this might imply processing all the IEs in a message, even though an IE has already been found in error whose action indicator indicates that the message is to be ignored. This is because a subsequent IE might be found in error, with an action indicator indicating clearing of the call, and this has the highest priority amongst all defined interpretations of the IE action indicator.

4. Implementation Guidelines

[image: image3.wmf]Signaling Layer

SAAL

ATM Layer

Physical Layer

Apart from the common features that most implementations of any stack are expected to have, the ATM-UNI signaling stack can be developed to have some unique selling points (USPs). The next subsection describes the general features of an ATM-UNI signaling stack implementation. The architecture of the stack is described in section 4.2. Next, section 4.3 describes some unique features that can be added to the stack implementation. Finally, section 4.4 discusses means to handle the inherent complexities in the ATM standards to make the stack implementation efficient.

4.1 Common Features of an Implementation

The ATM-UNI Signaling Stack can be developed to have certain general features that are expected of any good and efficient implementation. These features are as discussed below:

· Component-based development: The signaling stack should be developed using a component-based approach as against a pure procedure-based approach. The component-based approach is attractive in that it is easier to develop and that it facilitates reuse. Also, faults and bugs are easier to locate in case of a component based approach. The various components of an ATM-UNI signaling stack are discussed in detail in section 4.2.

· Dual Interface: The stack should provide the option of both message-based and function-based interface for greater flexibility to the user. Also, this allows for easier portability at the user site, as the nature of the interface can be chosen based on the customer requirements.

· Generic Routines: The stack can be written so as to have separate generic routines to implement data structures like trees, link-lists, etc. These routines are generic in that they can be reused with very little or no modification. Hence, reusability of components across different stack implementations is possible, if kept in mind initially.

· Ease of Porting: The stack should be implemented so as to be processor as well as Operating System independent. If coding in

Figure 3: High-level Architecture of ATM-SVC Signaling Stack
"C" ("C" is to most commonly used programming language for stack implementations), ANSI C can be used to ensure ease of portability. Operating System related calls should always be made through macros, which can all be clubbed in one header file. This file can be named appropriately to indicate that this (and only this one) is to be touched for porting.

4.2 Stack Architecture

Figure 3 shows a high-level architecture of the signaling stack with various components. The boxes in light grey are those that are part of the
code to be developed and provided to the user. Apart from these, OS wrappers and Management related components could be optionally developed and provided to the user.

The main stack is divided into the following components:

· Initialization: Stack Initialization is typically a one-time activity at the time of system startup. It can be done either through initialization API’s or through embedded function calls. It is not necessary to provide API’s for system initialization. This can be automatically taken care of during system startup. The initialization typically entails: a) allocating memory for various data structures and b) initializations of these data structures with appropriate values.

· Finite State Machine (FSM): This is the most important part of the stack and is responsible for maintaining the state of all the calls managed by SVC entity. The FSM module can be organized as a collection of state-event functions. Based upon the type of event and the current state of SVC entity, a function can be invoked using function tables.

· Encoder/Decoder Module: The SVC-signaling entities exchange messages that have well defined formats. These messages can be formed at the time of transmission by an Encoder. The Encoder takes appropriate parameters as input and forms these well-defined signaling messages. During reception, a Decoder (also called Message parser) is used. The Decoder does the validation and extraction of all the messages received from the peer entity. If the validation is successful, appropriate action is taken, else error handler is called.

· Error Handling: This module contains functions used for error processing. Any occurrence of error results in a call to an Error Handler function. Two types of error processing need to be provided, namely, protocol-related errors and signaling-related errors. The former would be a full-fledged error-handling routine for protocol-related errors e.g., an incorrectly encoded signaling message. The latter performs specific action based upon the type of error (e.g., failure to get a free buffer), and the severity of the error.

· STATISTICS: The Statistics module is responsible for the collection and maintenance of statistics. The statistics are maintained on a per-interface basis. All statistics can be identified to fall into four categories, namely a) call related, b) messages sent/received related, c) API invocation related, and d) Timer expiry related.

· DEBUG: The DEBUG module (also called TRACE module) is responsible for printing of debugging traces (i.e., printf statements which track the flow of execution). Flexibility should be provided so that all of these can either be entirely compiled out for a faster and more-efficient code, or the level of details provided by these statements can be changed on a per-module basis. Both preprocessor and runtime options can be provided.

· SUPPORT: These refer to the generic support routines, including trees, linked lists etc, which are developed for reuse and can be used as it is in other stack implementations as well.

4.3 Unique Features

Apart from the general features already discussed, the stack can be designed to have certain extra features that can prove to be its unique selling points (USPs). A few of these possible features are discussed below:

· Hotline Facility: To simplify the procedure for establishing a call, and to hide the protocol complexity from the application layer, a hotline facility can be provided. The hotline facility is useful for frequently visited destinations. The underlying idea is to make a set of SETUP messages and avoid the overhead of forming them repeatedly. Each of the preformed SETUP messages can be associated with a hotline number, and the user application would just need to call an API with this number to establish a call.

· Automated Call Maintenance Procedures: This feature provides automatic maintenance of active calls. The idea is to periodically monitor the state of active calls by sending STATUS ENQUIRY message and to ensure that erroneous conditions lead to quick termination of calls. If a STATUS message is received in response to a STATUS ENQUIRY indicating an incorrect state, then this situation can be handled appropriately. This feature, however, has some overhead of sending STATUS ENQUIRY messages periodically, and hence it should be possible to switch this feature OFF either through a run-time or a compile-time option.

4.4 Handling Complexity

This section discusses the techniques that can be used to make the implementation of the ATM SVC stack simpler. It also discusses solutions for some of the problems that were discussed in section 2.

4.4.1 Merging of states for N-UNI and U-UNI

Consider the scenario as depicted in Figure 4. The call states at the U-UNI and the N-UNI at both the source and the destination end are depicted after a SETUP message is sent on the User-Network Interface (UNI).

[image: image4.wmf]ATM EndSystem

ATM Network

U-UNI

N-UNI

Figure 4 Call States at U-UNI and N-UNI

Under different scenarios, the same ATM SVC stack implementation could act as the source end or the destination end. Normally, it would also be convenient to provide a compile time option in the implementation, which allows a stack to run as the U-UNI or the N-UNI. As depicted in the figure above, if a SETUP message is received at the N-UNI, then, according to the specifications, the call state is changed to N1 (it would be at the source end). However, if the SETUP message is received at the U-UNI, then the call state is changed to U6 (it would be at the destination end). Thus, depending upon whether the stack is used as the U-UNI or the N-UNI, the call state would either be "call present" or "call initiated" upon receipt of the SETUP message. This would warrant the need for two different implementations of the internal state machine (the FSM), one for each type of configuration (U-UNI or N-UNI).

However, what is important is to note that though the defined states on the U-UNI and the N-UNI are different, the triggering event is the same,(here receipt of the SETUP message), and the next event (here, sending of the Call Proceeding/Alerting/Connect message) as well as the procedures in the current state are specified to be the same. Thus, for a simpler and single implementation of the state machine internally within the stack, same call states could be maintained for both the U-UNI and the N-UNI. This could be done by maintaining the N6 ("call present") call state at the source N-UNI and the N1 ("call initiated") call state at the destination N-UNI in the example above. Thus, the call states are maintained as if the stack were configured as U-UNI. What is to be remembered is that though this simplifies the internal implementation of the state machine, it would not be able to inter-operate with other stack implementations in its current form. Thus, for interoperability with other implementations, the call state that is sent to the peer stack (in STATUS message etc) is to be appropriately modified.

4.4.2 Two pass message parser

As discussed in section 3, it is important in certain cases to know the IEs that are present in a message and/or to know the position of the IEs in the message. This can help in deciding whether further processing of individual IEs is required or not. For example, consider a case when a mandatory IE in a message is missing. In this scenario, it might be required to ignore the message without further processing of individual IEs. Also, a particular IE might be required to be processed prior to the processing of some other IEs, as discussed in section 3.

For the above scenarios, it is advisable to process a signaling message in two-stage. In the first-pass, the message is screened to determine the type of IEs that are present, as well as the location/offset of the IE in the message. This is recorded and kept for use in the second pass. The result of the first pass is as depicted in Figure 5. Once this is done, the initial checks on the message (which includes the presence of mandatory IEs) can be performed. In case further processing is required and no serious errors are encountered after the first pass, then the IEs can be individually processed in the order required, since the offset of each IE in the message is now known. This simplifies some of the problems discussed in section 3.

[image: image5.wmf]ATM EndSystem

ATM Network

U-UNI

N-UNI

Figure 5: First Pass on a Signaling Message

5. Suggestions for Simplification of Standards

Apart from the few solutions discussed in section 4.3 to handle complexities in the ATM standards, there are certain modifications that can be made in the ATM standards themselves to make them simple. As has been discussed, many complexities in the ATM signaling implementation arise because of no defined ordering of variable length IEs in a message. To simplify this, a loose ordering can be defined on the IEs in a message. Specifically, the following can be specified:

· All the mandatory IEs in a message MUST precede the optional IEs.

· An IE, say IE2, dependant on another IE, say IE1, MUST occur only after the IE that it is dependent on (i.e. IE1 must occur before IE2 in the message).

Both the above bullets ensure a simplified processing of the message, as no forward looking is required, and a one pass processing of the message is possible. Also, in many cases, the decision to proceed or not on encountering an error (say, mandatory IE missing error) can be made without having to process the entire message.

Another suggestion to simplify the implementation is to introduce an optional IE, called the "Remote CRV IE". In most implementations, the CRV chosen by the initiator of the call is done in such a way so as to simplify the search operations when a message is received back with this CRV. To take an example, information about the calls (active or inactive) within a system can be maintained as an array, and the index in the array can be used to generate the CRV Id. Now, since the CRV is a 23bit identifier, it may not be feasible to keep an array of 8million entries (to have a one-to-one mapping between the CRV and the array index). To keep the array size manageable, only some low-order bits of CRV (say 16 of them) can be formed using the index of the array. When a message is received back, a part of the CRV is masked out to get back the index in the array. Using this index, all information pertaining to the call can be easily retrieved. However, this flexibility of choosing a CRV is not available at the other end of the interface, since the CRV is not allocated there (i.e., CRV is allocated by remote end). Hence, the search strategy at the corresponding interface to determine the call related information associated with the CRV may not be very efficient. It is quite likely that a balanced tree is used with its associated searching overhead. The scheme used at the interface generating the CRV cannot be applied in this case, unless an array of 8million entries is maintained, or it is ensured that the remote user is not using the most significant bits (in which case a smaller array can be maintained). An array of 8 million entries is expected to be sparse, and hence a one-to-one mapping at this interface may not be feasible.

To take care of this situation, we propose the introduction of an optional "Remote CRV" IE. Here, when the first signaling message is received at an interface, a local CRV is allocated (just as it was done at the sender-end of the interface) and send back as part of the first response within the "Remote CRV" IE. Note that the CRV that was allocated by the other end of the interface is still sent normally. Thus, each signaling message henceforth would have both the normal CRV IE used currently as well as the optional "Remote CRV" IE. Now, even for remotely originated calls, the search is made using the CRV carried in “Remote CRV IE”. Using this CRV, a direct search can be made thereby making search operations at the remote end also simple.

6. Conclusions

ATM being a Virtual Circuit based technology requires the establishment of an end-to-end connection prior to data transfer. Both the ITU-T and ATM-Forum have specified the signaling standards for ATM SVCs. The standards in their current form have many complexities that make the implementation of the ATM SVC Signaling stack inefficient. However, certain implementation decisions can aid in simplifying the complexities, as has been discussed in this paper. These mainly do with introducing a two-stage message processing scheme and the merging of the state machine for the U-UNI and the N-UNI. Apart from these implementation-related decisions, the standards themselves can be modified to make things simpler. This includes introducing a loose ordering on the IEs and introducing an additional "Remote CRV" IE. An ATM SVC Signaling Stack should efficiently take care of most of the implementation issues discussed in this paper.

7. References

1. ITU Recommendation Q.2931, BISDN DSS2 UNI Layer 3 Specification for Point to point call/connection control.

2. ITU Recommendation Q.2961, BISDN DSS2 UNI Layer 3 Specification for Additional Traffic Parameters.

3. ITU Recommendation Q.2971, BISDN DSS2 UNI Layer 3 Specification for point to multi point call/connection control.

4. ATM UNI 4.0 Signaling Specification.

5. ATM UNI 3.1 Signaling Specification.

6. Signaling in ATM Networks by Raif O. Onvural and Rao Cherukuri.

Client

Build

Client

Build

Stack

Build

Interface Functions

Lower Layer

Interface Functions

Service User

Encoder/Decoder Module

State Machine

Statistics/Traces/ Debug Routines

Error Handling

Generic Support Routines

Initialization

Main Module

Functional Interface

� EMBED Visio.Drawing.5 ���

Message-Based Interface

Functional Interface

Message-Based Interface

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

[image: image6.wmf]Signaling Layer

SAAL

ATM Layer

Physical Layer

[image: image7.wmf]IE Type

Offset

IE1

Off1

IE2

Off2

IEn-1

Offn-1

IEn

Offn

M

E

S

S

A

G

E

[image: image8.wmf]ATM Network

U1

N1

U-

UNI

N-

UNI

SETUP

N6

U6

U-

UNI

N-

UNI

SETUP

Source

Destination

_1018861288.vsd
IE Type�

Offset�

IE1�

Off1�

IE2�

Off2�

IEn-1�

Offn-1�

IEn�

Offn�

M
E
S
S
A
G
E�

_1018869372.vsd
U1�

N1�

U-UNI�

N-UNI�

SETUP�

N6�

U6�

U-UNI�

N-UNI�

SETUP�

Source�

Destination�

ATM Network�

_1018859932.vsd

_1018859813.vsd
ATM EndSystem�

ATM Network�

U-UNI�

N-UNI�

