A Survey of Lossless Data Compression Techniques

By Sumit Kasera and Navita Jain

Abstract: Way back in October 1948, an article written by Claude Shannon titled “A Mathematical Theory of Communication” was published in the Bell Lab Technical Journal. A landmark event, this article laid the fundamentals of “Information theory”. In the next five decades or so, the field of information theory has graduated into a big research area and is now practically known as the “Science of Compression”. Compression is essentially a means to reduce the number of bits required to store and transfer information. Compression manifests itself in the form of data compression, speech compression and image compression among others.

In this paper, we survey the currently available techniques to compress data. Among the techniques available, two categories are distinctly identifiable. These two categories are lossless compression and lossy compression. In this paper, we limit ourselves to lossless data compression techniques.

This paper is organized as follows. Section 1.1- 1.5 elaborate upon the general concepts of data compression. Section 1.6 discusses probabilistic coding method. Example techniques in the form of Shannon-Fano and Huffman coding are explained in this section. Section 1.7 discusses the adaptive huffman technique and explains an example (Algorithm FGK) of the same. Section 1.8 discusses the arithmetic coding technique. Section 1.9 discusses dictionary-based techniques. Dictionary-based techniques are one of the most commonly used technique and lot of variants in this category exist, which include LS77, LZSS, LZ78, LZW and LZH. Section 1.10 discusses the Algorithm BSTW. Finally, section 1.11 discusses the V.42bis, a standard defined by ITU-T for data compression.

1.1 Introduction

Data compression, as a field, originated with the pioneering work of Claude Shannon on information theory way back in 1940s. Essentially, data compression deals with the means of reducing the number of bits required for storing and transferring information. Compressing data is necessary for a number of reasons. To start with, compressing data allows a user to keep more information in the system memory than otherwise possible. Consider a user who is allotted 2Mbytes of system memory. If the user works on files that require, on an average, 200Kbytes of memory, then he can only maintain ten different files. On the other hand, if compression reduces the file size by 50%, the same user can now maintain nineteen different files (assuming that the user works on one file at a time). There are plenty of other real-life examples where desktop users zip (compress) their files/applications to increase the free space available on the hard disk.

[image: image1.wmf]Probabilistic

(Shannon-

Fano and

Huffman)

Compression techniques

Lossless

Produces exact duplicate of the input after compression/

expansion cycle. Used mainly for storing/transferring word

files, database records, spreadsheets, C program files, etc.

Lossy

Results in certain loss of data after compression/

expansion cycle. Used mainly for storing/transferring

images and audio files.

Dictionary

based

(LZ77, LZ78,

LZW & LZH)

Adaptive

(Adaptive

Huffman)

Arithmetic

coding

Speech Encoding

and Compression

Image Encoding

and Compression

(JPEG)

Silence

suppression

Quantization

(PAM/PCM, QAM,

ADPCM/G.721, etc.)

Linear

Predictive

Coding

Differential

Modulation

Adaptive

Coding

The importance of compression gets much more prominent when downloading files (because the available network bandwidth has not kept pace with the size of applications) or physically transporting files (because the storage capacity of magnetic storage devices, like floppy disks, have not kept pace with the size of applications). As an example, consider an FTP download of a 1Mbytes MSword file using a 28.8Kbps modem link. Without compression, the file will take approximately 5-7minutes to be downloaded. On compressing the file and reducing the file size by 50%, the download time is reduced to 3-5minutes. Looking the problem from a different angle, to download the file in the same time, a 14.4Kbps modem is suffice. This explains why most FTP servers in the Internet have downloadable files in a zipped format. As another example, consider the physical transportation of a set of 7 files of size 250Kbytes each. By using compression, only a single floppy (1.44MB) is suffice to carry data, which otherwise would have required two floppies.

Figure 1‑1: Compression model
1.2 A Data Compression Model

Every data compression technique uses a model to function. This model is illustrated in Figure 1‑1. The input stream, generated from a data source, is fed into an encoder. The encoder then codes and compresses data. A notion of model is useful in understanding how the encoder works. The model defines the parameters that need to be used by the compression algorithm. For example, in Shannon-Fano scheme, the probability of characters is used for coding. Now, there can be a number of ways in which the probability of a character is determined. In the simplest case, the occurrence of each character is treated independent of the other. In another case, last N characters may be used for determining the probability. Whatever be the method, the point of the matter is that it is the model that defines the method to be used.

To regenerate original data from the compressed data, decoder is used. The decoder applies the reverse algorithm of that used by the encoder. Moreover, the decoder has some prior knowledge as to how the data is being encoded. This is where standardized compression algorithms come into play.

1.3 Information content and Entropy

Information is a measure of the probability of a message being selected from the set of all possible messages. Information thus is distinct from meaning; that is, a string of nonsense words and a meaningful sentence may be equivalent with respect to information content. Numerically, information is measured in bits. One bit is equivalent to the choice between two equally likely choices. When several choices are equally likely, the number of bits is equal to the LOGARITHM of the number of choices taken to the base two. When the various choices are not equally probable, the situation is more complex.

Information content of a message is measured in terms of its entropy. Entropy of a character is defined as the negative logarithm of the probability with which the character occurs in a message.

Number of bits required to code a character = - log (probability)

In simple terms, higher the probability of a character, higher is its entropy (i.e., higher is its information content) and lower is the number of bits required to code that character. Note that entropy is a theoretical concept. It merely gives the optimal number of bits required for coding a character. It does not tell us how a character can be coded. Moreover, when the entropy of a character is a non-integer, a value closest to the entropy has to be chosen. This approximation leads to inefficient coding. The limitations notwithstanding, entropy is an important measure to calculate the efficiency of any coding algorithm.

1.4 Performance Measures

Compression algorithms are appraised based on mainly two parameters. The first parameter is the algorithm complexity. This parameter is directly related to the time taken to compress and expand data. Needless to say, the faster and simpler the algorithm, the better it is. However, the nature of application also determines how important the speed factor is. If data transmission is taking place in real-time, then it may not be quite possible to compress/expand data because that introduces additional latency in transmission. On the other hand, when only memory is a constraint, then the speed factor may not be very consequential.

The second parameter is the amount of compression achieved. This is measured using the following formula:

%Compression Achieved = {(Size of the input data – Size of the compressed data)/Size of input data}

[image: image2.wmf]Step 1

Sort in

descending

order

Step 2

Divide into

two parts

Step 3

0*

1*

Step 4

00

1*

01

Step 5

00

11*

01

10

Step 6

00

111*

01

10

110

Step 7

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

00

1111

01

10

110

1110

Some technicians add another factor to the numerator of the left-hand side to account for the overheads involved in compressing/expanding data. This is justified because in certain algorithms, the control information that is sent to help decoder decode the message, is also a part of the compressed output.
Figure 1‑2: Compression techniques
1.5 Classification of Compression Techniques

Since the first algorithm for compressing data was introduced by Claude Shannon, Data Compression has come a long distance. Today, we have a lot of techniques available for compressing data, each tailored to match the needs of a particular application. For example, compressing data and compressing image require different approaches because while data files do not permit approximations, digital images are, by nature, approximations of the original picture.

Compression techniques can be primarily classified into two broad categories, namely lossless compression and lossy compression. As the two names suggest, the classification is based on the relationship between inputs and outputs after a compression/expansion cycle is complete. In lossless compression, the output exactly matches with the input after a compression/expansion cycle. Lossless techniques are mainly applicable to data files (e.g., word files, C code, database records, etc.) where a single bit loss can render the file useless.

In contrast, a lossy compression technique does not yield an exact copy of input after a compression/expansion cycle. Voice transfer and digital representation of images are two good examples where lossless compression is used. Note that lossless compression, by their very nature, can be applied only to those areas where there is an inherent approximation involved. For example, consider digitized voice transfer, where the audio signals generated during conversation are actually in analog format. By converting the signals in a digital format (using techniques like PCM), all we are doing is finding a discrete value closest to the actual value of the sample. To provide a better quality of communication, we can increase the number of levels representing the amplitude spectrum (i.e., increase the bits representing a voice sample), but we can never have a perfect copy of the analog sample. Still, the whole thing works because the resulting difference is insignificant in nature. This is the rationale behind using lossy compression.

Figure 1‑2 illustrates the different lossless and lossy compression techniques. In this paper, however, we limit ourselves to the discussion of lossless techniques only. Specifically, we discuss the following lossless techniques:

· Probabilistic Coding

· Shannon-Fano Algorithm

· Huffman Algorithm

· Adaptive Huffman
· Algorithm FGK

· Arithmetic Coding

· Dictionary-based techniques

· LZ77

· LZSS

· LZ78

· LZW

· LZH

· Algorithm BSTW

1.6 Probabilistic coding

To understand probabilistic coding, consider the problem of representing a set of N characters using binary strings. The simplest way is to solve this problem is to use a different (Log2N(bit number to represent each character. (For example, if the set of characters is {A, B, C, D}, then we use a two bit (Log24(number to define each character, something like A = 00, B = 01, C = 10 and D =11). In fact even though the scheme is simple, it is used in the ASCII notation, albeit using a seven-bit string. However, the biggest problem with this method is that it fails to exploit the fact that occurrence of certain characters (like ‘s’ or ‘a’) is much more probable than the occurrence of certain other characters (like ‘z’ or ‘x’).

Probabilistic coding aims to solve this problem by exploiting the aforementioned fact. Hence, all probabilistic coding schemes have two important properties. First, probability of occurrence is the guiding factor behind coding of the characters. Characters occurring with higher probability are coded using fewer bits, and vice-versa. Second, any stream of characters can be unambiguous encoded and decoded. This is ensured by not using codes of one character as prefixes of another. Otherwise, it is impossible to determine which of the two characters have arrived. For example, consider three symbols A, B and C with codes 0, 01, and 10 respectively. Now, if a ‘0’ arrives, we cannot tell whether the symbol A has arrived or whether B will be arriving
.

	Table 1‑1: Probability distribution for a set of characters

	Character
	Number of occurrences in a message
	Probability of occurrence

	A
	28
	0.28

	B
	6
	0.06

	C
	11
	0.11

	D
	17
	0.17

	E
	31
	0.31

	F
	7
	0.07

In this section, we look at two important probabilistic algorithm, namely Shannon-Fano algorithm and Huffman algorithm. We define a probability distribution (see table) that will be used subsequently for purpose of illustrations/examples.

1.6.1 Shannon-Fano Algorithm

Shannon-Fano algorithm was simultaneously developed by Claude Shannon (Bell Labs) and R.M.Fano (MIT). This algorithm uses the character’s probability of occurrence to code it. Decoding the character involves a simple procedure for tree traversal.

The following are the steps of Shannon-Fano algorithm for coding a character:

1. For a given list of symbols, develop a corresponding list of probabilities or frequency counts so that each symbol’s relative frequency of occurrence is known.

2. Sort the lists of symbols according to frequency, with the most frequently occurring symbols at the top and the least common at the bottom.

3. Divide the list into two parts, with the total frequency counts of the upper half being as close to the total of the bottom half as possible.

4. The upper half of the list is assigned the binary digit 0, and the lower half is assigned the digit 1. This means that the codes for the symbols in the first half will all start with 0, and the codes in the second half will all start with 1.

5. Recursively apply the steps 3 and 4 to each of the two halves, sub-dividing groups and adding bits to the codes until each symbol has become a corresponding code leaf on the tree.

For the probability distribution already provided, Figure 1‑3 illustrates the steps involved in coding the characters. To start with, the characters are arranged in descending order of probability of occurrence. After this, the list is recursively divided, and 0 and 1 assigned to top and bottom lists. When the process is complete, each character has a unique code assigned to it. (In the given figure, stars indicate that the code is not complete and bits will be appended to the code.)

Table 1‑2 analyses the efficiency of Shannon-Fano algorithm. As mentioned earlier, the concept of entropy is used to measure the efficiency of any given algorithm. As against a total information content of 233 bits, 237 bits is being used for carrying the message. This translates into an overhead of 1.4% {(237-233)/23}. The basic reason for this overhead is the approximation involved in rounding off the information content of a character to the nearest integer. For example, although ‘E’ has an information content of 1.69, 2bits are used to encode it. This alone accounts for the 9.61bit overhead (62 – 52.39). Although rounding off may offer some positive overhead also (see row entries of ‘C’), the end result is using up more bits that is required to code the message.

To summarize, Shannon-Fano is a reasonably efficient algorithm. However, the next algorithm (Huffman) that we look at offers even better performance.

[image: image3.wmf]E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

0

1

13

Step 1

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

0

1

13

Step 2

0

1

24

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

0

1

13

Step 3

0

1

24

0

1

41

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

0

1

13

Step 4

0

1

24

0

1

41

0

1

59

B (6)

Step 5

Final codes

A

B

C

D

E

F

01

00

10

110

1110

1111

E (31)

A (28)

D (17)

C (11)

F (7)

0

1

13

0

1

24

0

1

41

0

1

59

0

1

100

Figure 1‑3: Steps of Shannon-Fano theorem
	Table 1‑2: Analysis of Shannon-Fano algorithm

	Character
	Number of occurrences in a message
	Probability of occurrence
	Entropy

(- log2P)
	Total Information content (occurrence * entropy)
	Bits used to code the message
	Total number of bits used

	A
	28
	0.28
	1.83
	51.24
	2 (01)
	56

	B
	6
	0.06
	4.05
	24.3
	4 (1111)
	24

	C
	11
	0.11
	3.18
	34.98
	3 (110)
	33

	D
	17
	0.17
	2.55
	43.35
	2 (10)
	34

	E
	31
	0.31
	1.69
	52.39
	2 (00)
	62

	F
	7
	0.07
	3.83
	26.81
	4 (1110)
	28

	
	
	
	
	233.07
	
	237

1.6.2 Huffman Algorithm

Huffman algorithm is not very different from Shannon-Fano algorithm. Both techniques employ a variable-bit probabilistic coding scheme. However, the two algorithms significantly differ in the manner in which they assign codes to characters. Shannon-Fano uses a top-down approach of coding; that is, the entire set of characters is first divided into two parts, and then, depending upon the part to which a character belongs, MSB is assigned.

In contrast, Huffman algorithm uses a bottom-up approach to code characters. The algorithm for coding goes as follows:

1. The two free nodes with the lowest weights are located

2. A parent node for these two nodes is created. It is assigned a weight equal to the sum of the two child nodes

3. The parent node is added to the list of free nodes, and the two children are removed from the list.

4. One of the child nodes is designated as the path taken from the parent node when decoding a 0 bit. The other is arbitrarily set to the 1 bit.

5. The previous steps are repeated until only one free node is left. This free node is designated the root of the tree.

Figure 1‑4 shows how Shannon-Fano algorithm operates on the given set of characters. Since the steps are self-explanatory, they are not detailed any further. Rather, we focus are attention to the efficiency of Shannon-Fano algorithm. Fortunately or unfortunately, for the input we have chosen, Shannon-Fano and Huffman give identical results. This is merely a co-incidence and need not be always true. In general, Huffman is either equal to or better than Shannon-Fano algorithm.

In fact, D.A.Huffman proved in 1952 that his coding method cannot be improved by any other scheme that uses an integral number of bits to code characters. Since both Huffman and Shannon-Fano use roughly similar time to compress/expand, former is preferred over the latter. This is the reason why Huffman finds it way in many compression tools, JPEG algorithm and even FAX machines.

[image: image4.wmf]Data

Source

Encoder

Decoder

Input stream

Compressed data

Output stream

Figure 1‑4: Steps of Huffman algorithm

	Table 1‑3: Analysis of Huffman algorithm

	Character
	Number of occurrences in a message
	Probability of occurrence
	Entropy

(- log2P)
	Total Information content (occurrence * entropy)
	Bits used to code the message
	Total number of bits used

	A
	28
	0.28
	1.83
	51.24
	2 (01)
	56

	B
	6
	0.06
	4.05
	24.3
	4 (1111)
	24

	C
	11
	0.11
	3.18
	34.98
	3 (110)
	33

	D
	17
	0.17
	2.55
	43.35
	2 (10)
	34

	E
	31
	0.31
	1.69
	52.39
	2 (00)
	62

	F
	7
	0.07
	3.83
	26.81
	4 (1110)
	28

	
	
	
	
	233.07
	
	237

1.7 Adaptive Huffman Coding

The basic Huffman algorithm discussed earlier suffers from few drawbacks. To generate Huffman codes, this algorithm requires the probability distribution of the input set, which is often not available. That is the reason why the probability distribution table is sent along with the compressed data. Although this overhead is not very significant even for small files, a better compression scheme demands that instead of order-0 model, an order-1 model be used. But when an order-1 model is used, the overhead associated with sending the probability distribution table becomes exorbitantly high. Thus, to achieve better compression without incurring the high overheads (of sending probability distribution table), an adaptive mechanism called the Adaptive Huffman Coding is used.

The essence of Adaptive Huffman Coding can be appreciated by looking at following constructs:

	ENCODER
	DECODER

	Initialize_model();

while ((c = getc (input)) != eof)

{

 encode (c, output);

 update_model (c);

}
	Initialize_model();

while ((c = decode (input)) != eof)

{

 putc (c, output);

 update_model (c);

}

The key is to that both encoder and decoder use exactly the same initialization and update_model routines. There are various alternatives for implementing the initialization routine. One of options is to have only two codes, namely EOF and ESCAPE at the beginning of the execution. EOF indicates the end of the input string. ESCAPE code indicates that the bit-string that follows is the first occurrence of a character that is not yet present in the Huffman tree. This code is required because, initially, there is no code corresponding to any given character. When the first time a character is encountered in the input string, the encoder creates a new entry in the Huffman tree and sends an ESCAPE code followed by the bit-string (of that character). Receiving an ESCAPE code, decoder creates a new entry in the Huffman tree corresponding to the character that follows the escape code. As another option of implementing the initialization routine, each possible character of the input set is initialized with a constant value of 1. As the input string is scanned, the frequently occurring character will require fewer characters and vice-versa. However, the presence of unused codes makes this scheme inefficient.

The update_model does two things. Firstly, it increments the count associated with each character in the Huffman tree (note that depending upon the initialization scheme, the initial count of a character is either zero or one). Secondly, it updates the Huffman tree. Updating the tree is necessary because with a change in the frequency count of a character, the position of that character in the Huffman tree also changes. Figure 1‑5 illustrates how change in frequency count of character ‘A’ changes the Huffman tree.

During the updates, the Huffman tree maintains its sibling property. A binary code tree has the sibling property if each non-root node has a sibling and if the nodes can be listing in order of non-increasing weight with each node next to its sibling. When swapping is necessary, the farthest node with weight W is swapped with the node whose weight has just been increased to W+1.

[image: image5.wmf]Forward

transformation

Input string

Move-to-front

encoding

(L, I)

Backward

transformation

Original string

Move-to-front

decoding

(L, I)

Huffman/

Arithmetic

compression

(R, I)

Huffman/

Arithmetic

decompression

(R, I)

Figure 1‑5: Updating the Huffman tree

1.7.1 An example of Adaptive Huffman: Algorithm FGK

Algorithm FGK (developed by Faller, Gallager and Knuth) employs the basic Adaptive Huffman technique. In Algorithm FGK, both sender (encoder) and receiver (decoder) maintain dynamically changing Huffman code trees whose leaves represent the characters seen thus far and whose weights are the current frequency counts for the characters. Initially the tree contains only the 0-node, a special node representing messages that have yet to be seen (initially all messages are yet to be seen). At any given stage in the execution of the algorithm, k out of the possible n different characters have been seen, so there are k+1 leaves in the tree, one for each of the k seen characters plus one more for the 0-node.

Now, the encoding part of Algorithm FGK goes as follows:

Initialize tree with just 0-node

for each character ‘c’

 if ‘c’ has been seen then

 transmit ‘c’ code

 increment ‘c’s frequency

 rearrange the tree if necessary

 else

 transmit the code for the 0-node

 transmit ‘c’

 split the 0-node using one sibling

 for ‘c’ and the other for the new 0-node

 frequency for ‘c’ node is set to 1

 rearrange the tree if necessary
Similarly, decoding for Algorithm FGK goes as follows:

Initialize tree with just 0-node

for each codeword w

 if w is not the code for the 0-node then

 transmit w's character

 increment w's frequency

 rearrange the tree if necessary

 else

 transmit the character ‘c’ appearing next in the encoding

 split the 0-node using one sibling

 for ‘c’ and the other for the new 0-node

 frequency for ‘c’s node is set to 1

 rearrange the tree if necessary

1.8 Arithmetic coding

As briefly mentioned earlier, both Huffman and Shannon-Fano algorithms suffer from the fact that an integral value of bits is needed to code a character. This drawback becomes particularly visible when the probabilities of one of the characters is very large, say 0.95 (or entropy of .07), and still one bit is required to code it. This translates into an overhead of 1300% ((.93/.07) * 100). Another scenario when the two schemes fail is when there are only two characters to transfer. Thus, for pure binary data transfer, compression schemes like Huffman and Shannon-Fano cannot be applied.

Arithmetic coding has emerged as an attractive alternative to the two schemes mentioned above. The logic behind arithmetic coding is to represent a given input string by a real number between 0 and 1 on a number line. Specifically, the input string is represented by a range of real numbers, which has an upper bound and a lower bound. For any number within the given range, the decoder can uniquely identify the input string. The more the number of characters in input string, greater is the precision required for the real number.

	Table 1‑4: Arithmetic Distribution model

	Character
	Probability of occurrence
	Cumulative probability
	Range

	A
	0.28
	0.28
	[0.0 , 0.28)

	B
	0.06
	0.34
	[0.28, 0.34)

	C
	0.11
	0.45
	[0.34, 0.45)

	D
	0.17
	0.62
	[0.45, 0.62)

	E
	0.31
	0.93
	[0.62, 0.93)

	F
	0.07
	1.00
	[0.93, 1.0)

Arithmetic coding entails the following steps:

1. The arithmetic distribution model for the given probability distribution is developed. This involves partitioning the probability space between 0 and 1 in N regions (where N = no of char) according to the probability of each character.

2. Range is initialized as [0,1).

3. For each input character ‘x’, the upper and lower bounds of the range is suitably modified according to the following two rules:

upper_bound = prev_lower_bound + range*high_range (x)

lower_bound = prev_lower_bound + range*low_range (x)

4. New range value is calculated using the following rule:

range = upper_bound - lower_bound

5. Step 3 and 4 is repeated for until all the characters are finished.

To understand how the algorithm of arithmetic coding works, consider the coding of input string “DEAF”. To start with, the range is [0, 1) and range value 1. For coding the first character ‘D’, the upper and lower bounds are derived from the range value of D, as given in Table 1‑4. (Note that if only D is sent, then since the decoder knows that the range of D is [.45, .62), any number chosen between .45 and .62 will be suffice to indicate the decoder that D has arrived). After D, when ‘E’ arrives, the lower and upper bounds are calculated using the twin formulas mentioned in step 3. This process is repeated for all each of the subsequent input strings.

Larger is the probability interval of a character, larger is its range. This means that the range gets narrower very slowly. In effect, less number of bits is required to code the number then. Reverse is the case for symbols with very narrow probability ranges. They tend to significantly increase the number of bits required to code them. But since their probabilities is very low, this happens very rarely resulting in a very efficient code.

	Table 1‑5: Arithmetic coding of input string “DEAF”

	Input Character
	Low
	High

Range

	D
	0.45
	0.62

	E
	0.554
	0.608

	A
	0.5540
	0.5691

	F
	0.56804
	0.56910

1.9 Dictionary Based Algorithms

So far we have mentioned those algorithms which achieve compression by encoding symbols as bit strings that use fewer bits than the number of bits used in the original symbols. The quality of the compression depends on how good or bad the program is modeled to denote symbols. If the occurrence of a symbol is frequent and bit string denoting that symbol uses less number of bits then better compression ration would be achieved.

Dictionary based methods use a totally different approach to compress data from the algorithms defined earlier in this paper. This family of algorithms encode variable length bit strings of symbols as single token. The token can be of two types:

· Pointer Type: If the character sequence currently being compressed has already occurred earlier in the input data, then instead of repeating it only a pointer to the earlier occurrence of the character symbol is produced.

All the methods of this group are based on the algorithm LZ77, developed and published in 1977 by Abraham Lempel and Jakob A refinement of this algorithm is LZSS algorithm developed in 1982 by Storer and Szymanski.

· Index Type: The algorithms based on Index type token generation create a dictionary of the phrases that occur in the input data. When a phrase already present in the dictionary is encountered, the index number of the phrase in the dictionary is produced in the output.

These methods are based on the algorithm LZ78, developed and published by Lempel and Ziv in 1978.The refinement which is the basis for the later methods is called LZW. It was developed by Terry Welch in 1984.These compression methods use the property of many data types to contain repeating code sequences. Good examples of such data are text files(code words represent characters) and raster images (code words represent pixels).

[image: image6.wmf]Step 1:

Huffman tree

A (1)

B (1)

C (1)

0

1

2

0

1

0

1

0

1

2

1

D (1)

4

E (5)

9

D (1)

B (1)

C (1)

0

1

3

0

1

0

1

0

1

2

1

A (2)

5

E (5)

10

Step 2:

 Huffman tree after an A is sent

D (1)

B (1)

C (1)

0

3

0

1

0

1

0

1

2

1

A (3)

6

E (5)

Step 3:

Huffman tree after another A is sent

11

D (1)

B (1)

C (1)

0

3

0

1

0

1

0

1

2

1

A (6)

9

E (5)

Step 4:

Huffman tree after 3 more A are sent

14

On the basis of how the dictionary is build and maintained, dictionary methods can be divided into two categories: Static and Adaptive. In static dictionary based method a predefined dictionary called Static Dictionary, is used to encode text. The dictionary contains the code words for most probable occurring words. This dictionary could be developed with only few thousand entries depending upon the implementation. Once the dictionary is developed, it could be kept online and is used by both encoder and decoder. Dictionary does not change while the data is being compressed. The model of static dictionary based methods is depicted in Figure 1‑6.

Figure 1‑6: General Static compression
Static Dictionary has advantages and disadvantages. The biggest advantage is that it can be tuned to fit the data it is compressing but on the disadvantage side it is two pass scan method. In first pass of the scan dictionary is created and in second pass data is compressed. In addition, the mapping determined in the first pass of a static coding scheme must be transmitted by the encoder to the decoder resulting in a certain amount of overhead added to the compressed form. Other disadvantage is it is implementation dependent.

In contrast to the static dictionary, adaptive dictionary (also called dynamic dictionary) adapts to changes in input data characteristics over time. Instead of having a completely defined dictionary when compression begins, adaptive schemes start out either with no dictionary or with a default baseline dictionary. The fact that these codes adapt to changing characteristics appealing. Some adaptive methods adapt to changing patterns in the source while others exploit locality of reference.

Methods adapt to changing pattern are based on the assumption that words occurring in the input data are uniformly distributed while locality of reference based adaptation considers the fact that a wide variety of text have a tendency that for a particular word to occur frequently for short periods of time then to fall into disuse for long periods. The model of adaptive dictionary based methods is depicted in Figure 1‑7.

[image: image7.wmf]Read input

symbol

Symbols

Encode symbol

Output code

Dictionary

Codes

Figure 1‑7: General Adaptive compression

All of the adaptive methods are one-pass methods i.e. they require only one scan of the ensemble. Instead of generating statistics in each pass, statistics are continually modified as new characters are read in and coded. The fact that an initial scan is not needed implies a speed improvement in the adaptive case. Advantage of adaptive model is ability to adapt to local conditions however one problem with adaptive model is they start essentially knowing nothing about the data. So in the beginning of the encoding these methods do not compress very well.

In the following part of the paper some dictionary based methods are explained. In algorithms most frequently used terms are:

· Input stream: the sequence of characters to be compressed

· Character: the basic data element in the input stream

· Coding position: the position of the character in the input stream that is currently being coded.

· Lookahead buffer: the character sequence from the coding position to the end of the input stream

· Window: The window of size W contains W characters from the coding position backwards, i.e. the last W processed characters

· Pointer: A Pointer points to the match of the character or character stream at the coding position in the window. Pointer can also specifies the length of the match.

1.9.1 LZ77 Algorithm.

The encoding algorithm search the window for the longest match with the beginning of the lookahead buffer and outputs a pointer to that match (if any match is found otherwise null pointer). Since it is possible that not even a one-character match is found, the output cannot contain just pointers. LZ77 solves this problem this way: after each pointer it outputs the first character in the lookahead buffer after the match. If there is no match, it outputs a null-pointer and the character at the coding position.

The encoding algorithm:

1. Set the coding position to the beginning of the input stream;

2. Find the longest match in the window for the lookahead buffer;

3. Output the pair (P,C) with the following meaning:

P is the pointer to the match in the window;

C is the first character in the lookahead buffer that didn't match;

4. If the lookahead buffer is not empty, move the coding position (and the window) L+1 characters forward and return to step 2.

The decoding algorithm:

1. The window is maintained the same way as while encoding. In each step a pair (P, C) from the input is read.

2. The sequence from the window specified by P and the character C is produced as output.

1.9.1.1 LZ77: An Example

Consider the following is Input stream for encoding to understand how LZ77 algorithm works.

Position : 1 2 3 4 5 6 7 8 9

Char :A A B C B B A B C

	Table 1‑6: LZ77 Encoding Process

	Step
	Position
	Match
	Char
	Output

	1
	1
	-
	A
	(0,0) A

	2
	2
	A
	B
	(1,1)B

	3
	4
	-
	C
	(0,0)C

	4
	5
	B
	B
	(2,1)B

	5
	7
	A B
	C
	(5,2)C

The encoding process is presented in Table 1‑7. In this table,

· Step indicates number of the encoding step. Step completes each time the encoding algorithm makes an output. With LZ77 this happens in each pass through the step 3.

· Position indicates the coding position. The first character in the input stream has the coding position 1.

· Match shows the longest match found in the window.

· Char shows the first character in the lookahead buffer after the match.

· Output presents the output in the format (B,L) C: (B, L) is the pointer (P) to the Match. This gives the following instruction to the decoder: "Go back B characters in the window and copy L characters to the output"; C is the Character to be written after the symbol represented by pointer (B,L) is produced.

Input stream for decoding:

(0,0)A(1,1)B(0,0)C(2,1)B(5,2)C

	Table 1‑8: LZ77 decoding process

	Step
	Input Code Word
	Output

	1
	(0,0)A
	A

	2
	(1,1)B
	AB

	3
	(0,0)C
	C

	4
	(2,1)B
	BB

	5
	(5,2)C
	ABC

1.9.1.2 Analysis of LZ77 Algorithm

The compression ratio achieved in this method achieves is very good for many types of data. However the encoding can be quite time-consuming, since there is a lot of comparisons to be performed between the lookahead buffer and the window. On the other hand, the decoding is very simple and fast.

Memory requirements are low both for the encoding and the decoding. The only structure held in memory is the window, which is usually sized between 4 and 64 kilobytes.

1.9.2 LZSS Algorithm

The algorithm LZ77 handles the case of no match in the window by outputting an explicit character after each pointer. This solution contains redundancy: either is the null-pointer redundant, or the extra character that could be included in the next match. The LZSS algorithm solves this problem in a more efficient manner: the pointer is output only if it points to a match longer than the pointer itself; otherwise, explicit characters are sent. Since the output stream now contains assorted pointers and characters, each of them has to have an extra ID-bit which discriminates between them.

The encoding algorithm:

1. Place the coding position to the beginning of the input stream;

2. find the longest match in the window for the lookahead buffer:

P := pointer to this match;

L := length of the match;

3. is L >= MIN_LENGTH?

YES: output P and move the coding position L characters forward;

NO: output the first character of the lookahead buffer and move the coding positon one character forward;

4. if there are more characters in the input stream, go back to step 2.

The decoding algorithm:

The window is slid over the output stream in the same manner the encoding algorithm slides it over the input stream. Explicit characters are output directly, and when a pointer is encountered, the string in the window it points to is output.

1.9.2.1 LZSS: An Example

Consider the following is Input stream for encoding to understand how LZSS algorithm works.

Position: 1 2 3 4 5 6 7 8 9 10 11

Char : A A B B C B B A A B C

(Minimum Length = 2)

	Table 1‑9: LZSS Encoding Process

	Step
	Position
	Match
	Output

	1
	1
	-
	A

	2
	2
	A
	A

	3
	3
	-
	B

	4
	4
	B
	B

	5
	5
	-
	C

	6
	6
	B B
	(3,2)

	7
	8
	A A B
	(7,3)

	8
	11
	C
	C

1.9.2.2 Analysis of LZSS Algorithm

This algorithm generally yields a better compression ratio than LZ77 with practically the same processor and memory requirements. The decoding is still extremely simple and quick. That's why it has become the basis for practically all the later algorithms of this type.

1.9.3 LZ78 Algorithm

The following terms are used to explain the LZ78 algorithm:

· Charstream: a sequence of data to be encoded;

· Character: the basic data element in the charstream;

· Prefix: a sequence of characters that precede one character;

· String: the prefix together with the character it precedes;

· Code word: a basic data element in the codestream. It represents a string from the dictionary;

· Codestream: the sequence of code words and characters (the output of the encoding algorithm);

· Dictionary: a table of strings. Every string is assigned a code word according to its index number in the dictionary;

· Current prefix: the prefix currently being processed in the encoding algorithm. Symbol: P;

· Current character: a character determined in the endocing algorithm. Generally this is the character preceded by the current prefix. Symbol: C.

· Current code word: the code word currently processed in the decoding algorithm. It is signified by W, and the string which it denotes by string.W.

As previously mentioned LZ78 algorithm is based on index type token generation. When the phrase already occurred in the input data stream an index to that phrase in the dictionary is produced as output and index is generated for the first time appearing symbol or phrase and an entry is made in the dictionary.

The encoding algorithm:

1. At the start, the dictionary and P are empty;

2. C := next character in the charstream;

3. Is the string P+C present in the dictionary?

a) if it is, P := P+C (extend P with C);

b) if not,

I. output these two objects to the codestream:

the code word corresponding to P (if P is empty, output a zero);

C, in the same form as input from the charstream;

II. add the string P+C to the dictionary;

III. P := empty;

4. are there more characters in the charstream?

a) if yes, return to step 2;

b) if not:

I. if P is not empty, output the code word corresponding to P;

II. END.

The decoding algorithm:

1. At the start the dictionary is empty;

2. W := next code word in the codestream;

3. C := the character following it;

4. output the string.W to the codestream (this can be an empty string), and then output C;

5. add the string.W+C to the dictionary;

6. are there more code words in the codestream?

a) if yes, go back to step 2;

b) if not, END.

1.9.3.1 LS78: An Example

Consider the following is Input stream for encoding to understand how LZ78 algorithm works.

Position: 1 2 3 4 5 6 7 8 9

Char
: A B B C B C A B A

	Table 1‑10: LZ78 Encoding Process

	Step
	Position
	Dictionary
	Output

	1
	1
	A
	(0,A)

	2
	2
	B
	(0,B)

	3
	3
	B C
	(2,C)

	4
	5
	B C A
	(3,A)

	5
	8
	B A
	(2,A)

Input for decoding

(0,A)(0,B)(2,C)(3,A)(2,A)

	Table 1‑11: LZ 78 Decoding Process

	Step
	Input Code Word
	Dictionary
	Output

	1
	(0,A)
	A
	A

	2
	(0,B)
	B
	B

	3
	(2,C)
	B C
	B C

	4
	(3,A)
	B C A
	B C A

	5
	(2,A)
	B A
	B A

1.9.3.2 Analysis of LZ78 Algorithm

The biggest advantage over the LZ77 algorithm is the reduced number of string comparisons in each encoding step. The compression ratio is similar to the LZ77.

1.9.4 LZW Algorithm

In addition to the terms used in defining LZ78 algorithm few other terms used in this algorithm are :

· Root: A Root is a single-character string.

· Previous code word: the code word that precedes the current code word in the codestream.

Dictionary is not empty at the start instead contains all the individual characters (called roots) that can occur in the charstream. Since all possible one-character strings are already in the dictionary, each encoding step begins with a one-character prefix, so the first string searched for in the dictionary has two characters. The character with which the new prefix starts is the last character of the previous string (C). This is necessary to enable the decoding algorihtm to reconstruct the dictionary without the help of explicit characters in the codestream.

The encoding algorithm:

1. At the start, the dictionary contains all possible roots, and P is empty;

2. C := next character in the charstream;

3. Is the string P+C present in the dictionary?

a) if it is, P := P+C (extend P with C);

b) if not,

I. output the code word which denotes P to the codestream;

II. add the string P+C to the dictionary;

III. P := C (P now contains only the character C);

4. are there more characters in the charstream?

a) if yes, go back to step 2;

b) if not:

I. output the code word which denotes P to the codestream;

II. END.

The principle of decoding goes as follows:

At the start of decoding, the dictionary looks the same as at the start of encoding i.e. it contains all possible roots. Let's consider a point in the process of decoding, when the dictionary contains some longer strings. The algorithm remembers the previous code word (pW) and then reads the current code word (cW) from the codestream. It outputs the string cW, and adds the string pW extended with the first character of the string cW to the dictionary. Because of this, the decoding algorithm "lags" one step behind the encoding algorithm with the adding of new strings to the dictionary.

The decoding algorithm:

1. At the start the dictionary contains all possible roots;

2. cW := the first code word in the codestream (it denotes a root);

3. output the string.cW to the charstream;

4. pW := cW;

5. cW := next code word in the codestream;

6. Is the string cW present in the dictionary?

a) if it is,

I. output the string cW to the charstream;

II. P := string pW;

III. C := the first character of the string cW;

IV. add the string P+C to the dictionary;

b) if not,

I. P := string pW;

II. C := the first character of the string pW;

III. output the string P+C to the charstream and add it to the dictionary (now it corresponds to the cW);

7. Are there more code words in the codestream?

a) if yes, go back to step 4;

b) if not, END.

1.9.4.1 LZW: An example

Contents of the dictionary in the beginning

A: 1

B: 2

C: 3

Input stream to be encoded

Position: 1 2 3 4 5 6 7 8 9

Char : A B B A B A B A C

	Table 1‑12: LZW Encoding Process

	Step
	Position
	Dictionary
	Output

	1
	1
	(4) A B
	1

	2
	2
	(5) B B
	2

	3
	3
	(6) B A
	2

	4
	4
	(7) A B A
	4

	5
	6
	(8) A B A C
	7

	6
	
	
	3

	Table 1‑13: LZW Decoding Process

	Step
	Code word
	Output
	Dictionary

	1
	(1)
	A
	-

	2
	 (2)
	B
	(4) A B

	3
	(2)
	B
	(5) B B

	4
	(4)
	A B
	(6) B A

	5
	(7)
	A B A
	(7) A B A

	6
	(3)
	C
	(8) A B A C

1.9.4.2 Analysis of LZW Algorithm

A special case occurs in LZW decoding algorithm if the current code word cW denotes an empty entry in the dictionary. This can happen because of the explained "lagging" behind the encoding algorithm. It happens if the encoding algorithm reads the string that it has just added to the dictionary in the previous step. During the decoding this string is not yet present in the dictionary. A string can occur twice in a row in the charstream only if its first and last character are equal, because the next string always starts with the last character of the previous one. This leads to the following decoding rule: the string pW is extended with its own first character and the resulting string is added to the dictionary and output to the charstream.

This method is very popular in practice. Its advantage over the LZ77-based algorithms is in the speed because there are not that many string comparisons to perform. Further refinements add
variable code word size (depending on the current dictionary size), deletion of the old strings in the dictionary etc. For example, these refinements are used in the GIF image format and in the
UNIX compress utility for general compression.

1.9.5 LZH Agorithm

Jeff Heath, Hughes Network System who is in System engineering team of Spaceway system has suggested some modification in the original LZW algorithm to accomplish better compression results.

Differences to the LZW algorithm are given below:

1. The primary difference between LZW and LZH algorithm is LZW adds one byte to a string each time it is encountered by the encoder, LZH adds as many as it can and immediately encodes an extension signal if multiple bytes are added. The implementation of the string extension is obtained through a flag and some extra set in the beginning of each code word entry into the dictionary. It improves the compression by upto 4%. It is referred to as “short Extension”.

2. Instead of reserving 256 code words for each possible one byte string, uses a bit to indicate whether a single hexadecimal byte or code word follows. In this method each code word takes one more bit, improves compression ratio of random files.

3. Looking at the flag bit decoder can tell the difference between single hex bytes and code words start code word size can be small and when code words are exhausted STEPUP is performed.

4. LZH encode and decoder dictionaries are not same. Instead of character itself in the dictionary, there is a pointer to the location of the character in the uncompressed data. There is also a count of the number of characters that this dictionary entry refers.

5. Decoder creates new dictionary entry a byte ahead of time since the dictionary contains the location of the byte within the data that has already been decompressed.

The encoding algorithm:

1. At the start, the dictionary contains all possible roots, and P is empty; history contains the input data stream

2. C := next character in the charstream;

3. Is there any entry for C in the dictionary

A. If it is

Is there any consecutive string starting with character appearing after C in original input stream, matches any string in already coded data stream

a) If it is

I. Find the maximum length of the matched string

II. Add codeword for that string in the dictionary with appropriate special code.

b) If not then

I. Output codeword for C.

B. If not then

Make an entry for C

III. are there more characters in the charstream?

c) if yes, go back to step 2;

d) if not:

III. output the code word which denotes P to the codestream;

IV. END.

The decoding algorithm is

1. At the start the dictionary is empty

2. cW := the first code word in the codestream (it denotes a root); certainly it would be a single character.

3. output the string.cW to the charstream; add this code in the dictionary and in history

4. pW := cW;

5. cW := next code word in the codestream;

6. check cW is a character or a string codeword

I. if it is a character codeword output character to the charstream; add this character in the dictionary and in the history if it is appearing for the first time; else add only in history

II. if it is a string

a) output root of the string to charstream; check whether codeword is to be extended

I. if it it to extend

extend the string and make appropriate entries in the dictionary and in the history, and output extended string in the charstream.

II. Else make entries in the dictionary and in history

III. Are there more code words in the codestream?

a) if yes, go back to step 4;

b) if not, END.

Terms used to explain this algorithm are:

· Count Pointer: keeps the count of the character in the extension of the entry
· Location Pointer: location of the string in the uncompressed form of the data.
· Special Code : These are codes specifically used for denoting end of data stream, extended string(more than one characters added in the coded string),
1.9.5.1 LZH: An Example.

Input stream to be encoded

Position: 1 2 3 4 5 6 7 8 9

Char : A B B A B A B A C

History : ABBABABAC

	Table 1‑14: LZH Encoding Process

	Step
	Position
	Dictionary(codeword, location,length)
	(code/character bit)Output

	1
	1
	(1,1,1) A
	(0)1

	2
	2
	(2,2,1) B
	(0)2

	3
	3
	
	(0)2

	4
	4
	(3,1,2) A B
	(1)1

	5
	6
	(4,4,3) A B A
	(1)3

	6
	9
	(5,9,1)C
	(0)5

Position
 : 1 2 3 4 5 6

Input to the decoder : (0)1 (0)2 (0)2 (1)1 (1)3 (0)5

	Table 1‑15: LZH Decoding Process

	Step
	Position
	Dictionary(codeword)
	Output

	1
	1
	(1) A
	A

	2
	2
	(2) B
	B

	3
	3
	
	B

	4
	4
	(3)AB
	AB

	5
	6
	(4)A B A
	ABA

	6
	9
	(5)C
	C

1.10 Algorithm BSTW.

Algorithm BSTW, developed by Bentley, Sleator, Tarjan and Wei; incorporates the additional benefit of taking advantage of locality of reference. It requires only one pass over the data to be transmitted. The algorithm uses a self-organizing list as an auxiliary data structure and employs shorter encodings for words near the front of this list.

Algorithm BSTW transmits each source message once; the rest of its transmission consists of encodings of list positions. These lists are initially empty. When message a(t) is transmitted, if a(t) is on the sender's list, sender transmits its current position and then updates its list by moving a(t) to position 1 and shifting each of the other messages down one position. The receiver similarly alters his word list. If a(t) is being transmitted for the first time, then k+1 is the "position" transmitted, where k is the number of distinct messages transmitted so far.

An Example

Input Stream: ababcdabef

Output Stream: 1 a 2 b 2 2 3 c 4 d 4 4 5 e 6 f

As the example shows, algorithm BSTW transmits each source message once; the rest of its transmission consists of encoding of list positions. Therefore, an essential feature of algorithm BSTW is a reasonable scheme for representation of the integers. A message ensemble on which algorithm BSTW is particularly efficient, described by Bentley et al., is formed by repeating each of n messages n. This method lead to the overhead of n lg n bits needed to transmit each source letter once which is much less than the overhead for static Huffman coding includes an additional 2n bits. Similarly different move-to-front schemes are also developed to achieve efficiency and speed. One such scheme was independently developed by Elias in his paper on interval encoding and recency rank encoding.

Figure 1‑8

: Schematic of Block-Sort Data Compression Algorithm
1.11 Block-Sort Data Compression Algorithm
The idea of block-sort data compression algorithm was first presented by Michael Burrows and David Wheeler in 1984, after which the Burrows-Wheeler algorithm is named. As compared to dictionary-based or statistical methods, the algorithm uses a rather unconventional approach. The basic idea is to take a block of data (as against sequential stream) and reorder them by using a reversible forward transformation. This transformation does not compress data but makes it more suitable for compression. Moreover, the transformation is reversible meaning that the original ordering of data elements can be restored by a decompression transformation with no loss of information. The reordered data is then compressed using simple algorithms like move-to-front and Huffman. At the decoder side, the decompression algorithms of move-to-front and Huffman result in an intermediate data, which is the same as the output of the forward transformation. After the decompression transformation is applied to this intermediate data, the original data is obtained. Figure 1‑8 shows a schematic of block-sort data compression algorithm.

1.11.1 Forward Transformation

The forward transformation takes a block of data and rearranges it using a forward transformation. The resulting output block contains exactly the same data elements that were present in the original block, differing only in their ordering. Transformation tries to bring all the instance of a character together to increase the probability of finding a character near another instance of it.

Briefly, this algorithm transforms a block B of length N by forming N rotations of B, sorting them and then putting last character of sorted rotations in a string L. An index I denotes the index of the original block index in the sorted rotations list. Rotations are created using cyclic shifts so last characters are adjacent to the first characters in the original block B. Sorting brings all the rotations starting with same characters together.

As an example, consider an ordered set of characters X = {a, b, c, d} from which a string B = ‘abcada’ is to be compressed. Number of characters in the block, N = 6.

Now, the transformation algorithm used before compression is described as follows:

1. Take all the rotations formed by cyclic rotation of B and form a NxN matrix M.

Row
Rotation

0
abcada

1
bcadaa

M =
2
cadaab

3 adaabc

4 daabca

5 aabcad

2. Algorithm uses ‘Modified Fast quick sort’ algorithm, to form a matrix M’of NxN by sorting rows of M in lexicographically. And let I be the index of the row containing original string. Here I=1.

Row
Rotation

0
aabcad
1
abcada ((This is the original string, so I is 1).

M‘ =
2
adaabc
3 bcadaa
4 cadaab
5 daabca
Time taken to sort the rotations of the input block is an important factor in compression speed. Among different sorting scheme trade off is in additional space requirement and time. As an alternative faster way to do compression transformation is to perform this algorithm on suffices of the input string instead of the rotations of the string. There are various modifications of quick sort algorithm used for sorting of suffices, claim to give better speed. In quick sort on suffices algorithm input string B is concatenated with EOF character, which do not appear in the input string and formed a new string ‘ on which compression transformation would be applied. Since EOF character is different from characters in B, suffices of B’ sort in the same order as rotations of the B.

3. Let L be the matrix of Nx1 as {M’[0][N-1] , M’[1][N-1] …….M’[N-1][N-1] }. Output of the transformation is pair (L, I). Here it is (‘dacaba’, 1).

4. Pair (L, I) forms the input of the compressor.

1.11.2 Decompression transformation

The steps of decompression transformation are described in this subsection. The decompression transformation is applied after Huffman/Move-to-front algorithm decompresses the compressed data (see Figure 1‑8). The decompression process produces a pair (L, I) which is taken as input by the decompression transformation.

1. Find first characters of the rotations and store them in the matrix F of Nx1. This is achieved by sorting L. F gives the first column of the matrix M’. In the example considered, sorting of ‘dacaba’ gives F = ‘aaabcd’

2. To describe subsequent steps, assume that target M’ is to be determined using known information, i.e. F, L and I.

The entries of M’ known so far are:

Row

M’

0

a - - - -d

1 a - - - -a

2 a - - - -c

3 b - - - -a

4 c - - - -b

5 d - - - -a

[F] [L]

Let Matrix M’’ be defined as a matrix obtained after shifting each row of M’ right by one character

Row

M’’

0

da - - - -

1

aa - - - -

2

ca - - - -

3

ab - - - -

4

bc - - - -

5

ad - - - -

[L][F]

Like M’, M’’ is a rotation of B which is sorted lexicographically based on second characters. Since rows of M’’ are also derived from rotating B, for each row in M’ there is a row in M’’ such that for all rows in M’ starting with a single character char, there is a row in M’’ starting with char appearing in lexicographical order. For example, if char = ‘a’ then rows 0, 1, 2 in M’ correspond to rows 1, 3, 5 in M’’.

Using first columns of M’ and M’’ a transform vector is formed such that each row k of M’’, where {k= 0, ….N-1}, corresponds to row T[k] of M’. Here, T represents a one to one correspond between F and L such that F[T[k]] = L[k]. In the example, T = { 5, 0, 4, 2, 3, 3 }

3. Since each row of the matrix M’ is a right cyclic rotation of block B; characters in L are predecessor of characters appearing in F in the original block B. From the construction of T we have F[T[k]] = L[k]. If we put j = T[k] then L[T[k]] cyclicly precedes L[k] in B.

Row I of M’ corresponds to B. Thus last character of B is L[I]. Vector T can give the predecessor of each character such that

For each k = 0, 1…..N-1 : B[N-1-k] = L[T i [I]] where T0[x] = x and T i+1[x] =T[Ti[x]]

Which gives the original output B. Here B = string would be generated from back to front.

1.11.3 Why is compression effective?

The forward transformation generates a string L consisting of last characters of all possible cyclic rotations of a given input string. To show how it facilitates better compression, consider the word ‘the’ which appears frequently in English language. After forward transformation is applied on input string, many of sorted rotations would start with ‘he’ and end with ‘t’. Thus, for each word that occurs commonly in English language (like word ‘the’), there will be a large numbers of the characters like ‘t’, which are the first character of that common word. This increases the probability that a given character is ‘char’ if ‘char’ occurs neat that point in L. This is the very property needed by compression algorithms like move-to-front which encode an instance of character ‘char’ by the count of distinct characters seen since the previous occurrence of ‘char’. If the character occurs frequently in a region, as is the result of forward transformation, the encoding will require smaller numbers, meaning fewer bits. This number can then be efficiently coded by using Huffman or Arithmetic encoder.

1.11.4 Move-to-front encoding

This subsection explains the move-to-front encoding scheme. This encoding scheme is applied to the output of the forward transformation (L, I). The output of the encoding is a vector of integers R[0] , R[1] …R[N-1] which are the codes for L[0], L[1]…L[N-1] respectively. The method to compute the value of R[i] is explained below:

1. R[0] is the number of characters that precede L[0] in the order set X = {a, b, c, d}. Here, L = ‘dacaba’ and so L[0] = ‘d’ and R[0] = 3 (since 3 characters ‘a’, ‘b‘ and ‘c’ precede ‘d’ in the ordered set).

2. Move L[0] (i.e., ‘d’) to the beginning of the ordered set. This is done so that if immediately another instance of character ‘d’ is seen, then a value of 0 is required to code ‘d’).

3. Repeat steps 1 and 2 for remaining characters.

For L = ‘dacaba’, R = { 3,1,3,2,3,1} is the output of move-to-front encoder. The output of the move-to-front encoder is fed to either Arithmetic encoder or Huffman encoder, where each element of R is treated as separate token (see Figure 1‑8).

1.11.5 Move-to-front decoding

This subsection explains the move-to-front decoding scheme. This decoding scheme is applied to the output of the decompression algorithm (Arithmetic/Huffman). The input of the decoding is a vector of integers R[0] , R[1] …R[N-1] (i.e., R = { 3,1,3,2,3,1}) and the output is the string L. The method to find the string L is explained below:

1. L[0] is the (R[0]+ 1)th the character in the order set X = {a, b, c, d}. Therefore, since R[0] is 3, L[0] is ‘d’ (the fourth character in the order set).

2. Move L[0] (i.e., ‘d’) to the beginning of the ordered set.

3. Repeat steps 1 and 2 for obtaining remaining characters of L.

For L = ‘dacaba’, R = { 3,1,3,2,3,1} is the output of move-to-front encoder. The output of the move-to-front encoder is fed to either Arithmetic encoder or Huffman encoder, where each element of R is treated as separate token (see Figure 1‑8).

The completion of decoding gives L = ’dacaba’. This along with I is fed as input to the decompression transformation algorithm, defined above, to give original string B.

1.11.6 Example of Block-Sort Data Compression Algorithm

Bzip2 and Szip uses Block-Sort Compression algorithm. Bzip2 compresses files using the Burrows-Wheeler block-sorting text compression algorithm, and Huffman coding. Compression is generally considerably better than that achieved by more conventional LZ77/LZ78-based compressors, and approaches the performance of the PPM family of statistical compressors.

1.12 Data Compression Standard

1.12.1 ITU-T V.42 Standard

The V.42bis Compression Standard was proposed by the International Consultative Committee on Telephony and Telegraphy (CCITT, now ITU-T) as an addition to the v.42 error-correction protocol for modems. Its purpose is to increase data throughput, and uses a variant of the Lempel-Ziv-Welch (LZW) compression method. It is meant to be implemented in the modem hardware, but can also be built into the software that interfaces to an ordinary non-compressing modem.

V.42bis can send data compressed or not, depending on the data. There are some types of data that cannot be compressed. For example, if a file was compressed first, and then sent through a V.42bis modem, the modem would not likely reduce the number of bits sent. Indeed it is likely that the amount of data would increase somewhat.

To avoid this problem, the algorithm constantly monitors the compressibility of the data, and if it finds fewer bits would be necessary to send it uncompressed, it switches to transparent mode. The sender informs the receiver of this transition through a reserved code word. Henceforth the data is passed as plain bytes.

While transmitting in transparent mode, the sender maintains the LZW trees of strings, and expects the receiver to do likewise. If it finds an advantage in returning to compressed mode, it will do so, first informing the receiver by a special escape code. Thus the method allows the hardware to adapt to the compressibility of the data.

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� Consider what will happen if there are only two symbols A (0) and B (01). if a ‘0’ arrives, we can actually tell by looking at the next symbol whether A has arrived or whether B will be arriving. But this is an exception condition.

�PAGE \# "'Page: '#'�'" �� What is a context?

[image: image8.wmf]Read input

symbol

Symbols

Encode

symbol

Output code

Dictionary

Codes

Update

dictionary

[image: image9.wmf]Step 1:

Huffman tree

A (1)

B (1)

C (1)

0

1

2

0

1

0

1

0

1

2

1

D (1)

4

E (5)

9

D (1)

B (1)

C (1)

0

1

3

0

1

0

1

0

1

2

1

A (2)

5

E (5)

10

Step 2:

 Huffman tree after an A is sent

D (1)

B (1)

C (1)

0

3

0

1

0

1

0

1

2

1

A (3)

6

E (5)

Step 3:

Huffman tree after another A is sent

11

D (1)

B (1)

C (1)

0

3

0

1

0

1

0

1

2

1

A (6)

9

E (5)

Step 4:

Huffman tree after 3 more A are sent

14

[image: image10.wmf]Step 1

Sort in

descending

order

Step 2

Divide into

two parts

Step 3

0*

1*

Step 4

00

1*

01

Step 5

00

11*

01

10

Step 6

00

111*

01

10

110

Step 7

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

00

1111

01

10

110

1110

[image: image11.wmf]Probabilistic

(Shannon-

Fano and

Huffman)

Compression techniques

Lossless

Produces exact duplicate of the input after compression/

expansion cycle. Used mainly for storing/transferring word

files, database records, spreadsheets, C program files, etc.

Lossy

Results in certain loss of data after compression/

expansion cycle. Used mainly for storing/transferring

images and audio files.

Dictionary

based

(LZ77, LZ78,

LZW & LZH)

Adaptive

(Adaptive

Huffman)

Arithmetic

coding

Speech Encoding

and Compression

Image Encoding

and Compression

(JPEG)

Silence

suppression

Quantization

(PAM/PCM, QAM,

ADPCM/G.721, etc.)

Linear

Predictive

Coding

Differential

Modulation

Adaptive

Coding

[image: image12.wmf]E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

0

1

13

Step 1

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

0

1

13

Step 2

0

1

24

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

0

1

13

Step 3

0

1

24

0

1

41

E (31)

A (28)

D (17)

C (11)

F (7)

B (6)

0

1

13

Step 4

0

1

24

0

1

41

0

1

59

B (6)

Step 5

Final codes

A

B

C

D

E

F

01

00

10

110

1110

1111

E (31)

A (28)

D (17)

C (11)

F (7)

0

1

13

0

1

24

0

1

41

0

1

59

0

1

100

[image: image13.wmf]Forward

transformation

Input string

Move-to-front

encoding

(L, I)

Backward

transformation

Original string

Move-to-front

decoding

(L, I)

Huffman/

Arithmetic

compression

(R, I)

Huffman/

Arithmetic

decompression

(R, I)

[image: image14.wmf]Data

Source

Encoder

Decoder

Input stream

Compressed data

Output stream

[image: image15.wmf]Read input

symbol

Symbols

Encode symbol

Output code

Dictionary

Codes

[image: image16.wmf]Read input

symbol

Symbols

Encode

symbol

Output code

Dictionary

Codes

Update

dictionary

_997130471.vsd

_1006263974.vsd
Forward transformation�

Input string�

Move-to-front encoding�

(L, I)�

Backward transformation�

Original string�

Move-to-front decoding�

(L, I)�

Huffman/Arithmetic compression �

(R, I)�

Huffman/Arithmetic decompression �

(R, I)�

_1006265163.vsd
Dictionary�

Read input symbol�

Symbols�

Encode symbol�

Codes�

Output code�

_1006265307.vsd
Dictionary�

Read input symbol�

Symbols�

Encode symbol�

Codes�

Update dictionary�

Output code�

_997131524.vsd

_995997818.vsd

_996088138.vsd

_995976466.vsd

