Module Name

Sub-Modules:

Signaling Complexity
Signaling Channels and Techniques
Signaling Issues
Signaling Models

Definition of Signaling

- Signaling is used between user and the network, or between two network elements to exchange various control information like:
 - Traffic Descriptors
 - Service Descriptors
 - Channel Identifiers
- In other words, Signaling is used to dynamically establish, monitor, and release connections (including physical, virtual and logical connections).

Definition of Signaling (2)

- Signaling is used only for establishment and release of dynamic connections
- Static connections are configured, manually or otherwise, and may or may not require signaling.
- Signaling provides the means for resource reservation.
- In essence, Signaling provides the means to exchange connection-related information prior to and/or after information transfer.

Module Name

Sub-Modules:

•Signaling Complexity

•Signaling Channels and Techniques

•Signaling Issues

•Signaling Models

Signaling Complexity: Telecom Network

- Traditionally, use of signaling in Telecom Networks was bare minimum.
- It was restricted to establish/release a voice channel in order to allow telephonic conversation.
- Now, with advent of supplementary services (e.g., CLIP, Call Forwarding, etc.), signaling is becoming more complex.
- For e.g., SS7 which has an advanced network architecture provides feature-rich signaling.

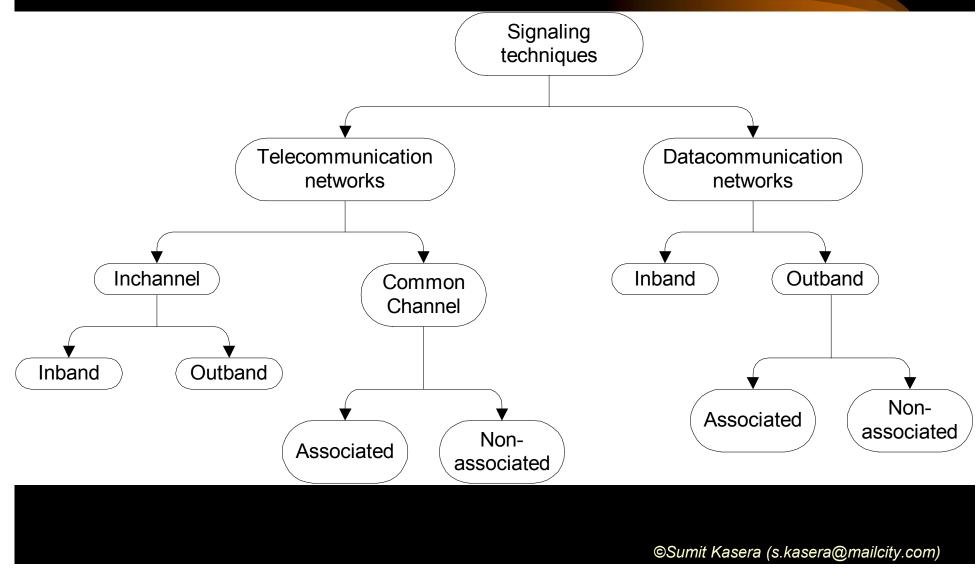
Signaling Complexity: Virtual-Circuit-Based Network

- If Permanent Virtual Circuits (PVCs) are established, generally, no signaling is required.
- For Switched Virtual Circuits (SVCs), signaling takes place using well-defined signaling protocol.
- The signaling complexity is dependent upon the underlying technology.
- For e.g., Q.2931/Q.2971 (signaling protocol for ATM) is much more complicted vis-a-vis Q.933 (signaling protocol for frame relay).

Signaling Complexity: Datacom Network

- Datagram networks, generally, do not require signaling. This is because by very definition, a connectionless network does not entail connection setup.
- To provide QoS, some of resource reservation and hence some form of signaling is required.
- For e.g., newer protocols like MPLS and RSVP require some form of signaling message exchange and resource reservation.

Module Name


•Signaling Complexity

•Signaling Channels and Techniques

•Signaling Issues

•Signaling Models

Signaling Channels and Techniques

Inband versus Outband Signaling

Telecom Network:

- Inband signaling refers to using the same voice frequency band to carry signaling information as that used to carry voice (i.e., 300-3400Hz).
- In contrast, *outband signaling* refers to using frequencies above the voice band (but below the upper threshold of 4000Hz) to carry signaling information.

Inband versus Outband Signaling (2)

- Datacom Network:
 - Inband signaling refers to using the same virtual channel to carry signaling information as that used to carry data.
 - In contrast, in *Outband Signaling* the signaling information and data are carried on different virtual channels.

Inchannel Signaling versus Common Channel Signaling

Telecom Network:

- In *Inchannel signaling*, the same physical channel carries signaling information as well as voice and data.
- In contrast, Common Channel Signaling uses a separate channel for solely carrying signaling information for a number of connections.

Inchannel Signaling versus Common Channel Signaling (2)

- Datacom Network:
 - To some extent, inchannel signaling and common channel signaling in telecommunication networks is analogous to inband signaling and outband signaling of datacommunication networks respectively.

Associated Signaling versus Non-Associated Signaling

- Telecom Network:
 - Both these techniques are variants of Common Channel Signaling
 - In Associated signaling, the signaling channels and the data paths pass through the same network elements.
 - In Non-associated signaling, there is no correspondence between signaling channels and data paths.

Associated Signaling versus Non-Associated Signaling (2)

- Datacom Network (for ATM):
 - In Channel associated signaling, all the signaling messages for each VP is exchanged on VCI=5 of that virtual path.
 - In Channel non-associated signaling, all the signaling messages of all the virtual paths are exchanged on VPI=0 and VCI=5.

MetaSignaling

- Another technique *metasignaling* finds mention in various signaling standards.
- Metasignaling refers to the process of establishing signaling channels using signaling procedures.
- The signaling channel so established is then used to establish channels for data transfer.

Module Name

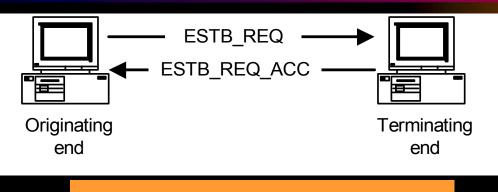
Sub-Modules:

•Signaling Complexity

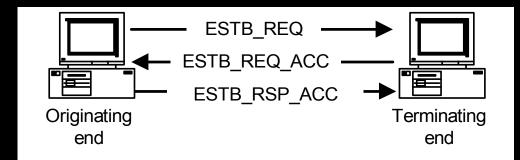
•Signaling Channels and Techniques

•Signaling Issues

•Signaling Models


Signaling Issues

- Acknowledgements
- Timer protection
- Parameter negotiation
- Call/Connection identification
- Finite state machine modelling
- Message encoding and decoding (TLV format)


Acknowledgements

- Required due to unreliable nature of transmission media.
- The classical two-army problem suggests that no scheme can provide full-proof acknowlegement for an unreliable media.
- However, 2 or 3 handshakes is typically sufficient for a normal case.

Acknowledgements (2)

Two Way Handshake

Three Way Handshake

Timer Protection

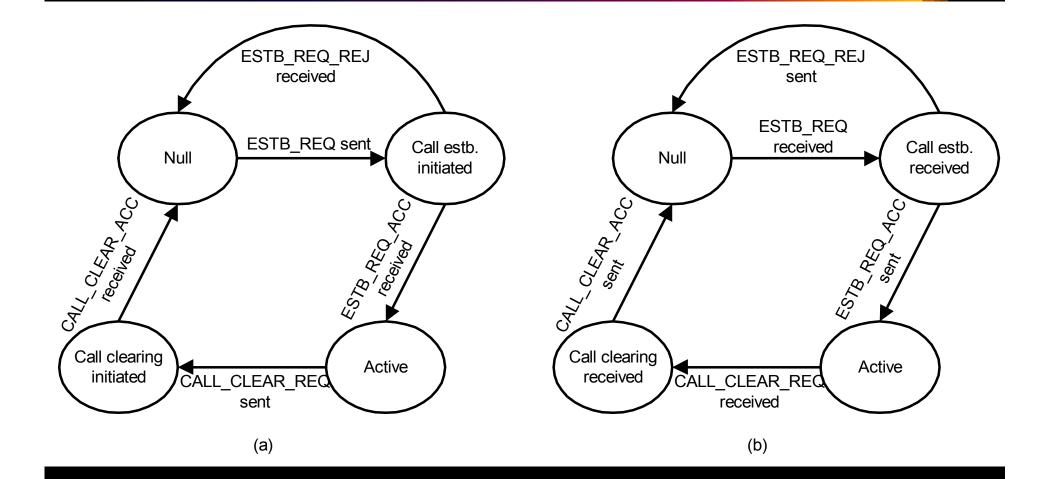
- Timers are used to avoid inordinate delays in case the signaling messages get lost or corrupted.
- Timer is started after message transmission.
- In case message is lost or discarded, the timer expires and message is retransmitted.

Timer Protection (2)

- If the message reaches safely and is acknowledged, the timer is stopped.
- Choosing the correct timeout value is important.
 - If this value is too small, then timers will timeout very frequently.
 - If a very large value is chosen, it may defeat the purpose of keeping timers.
 - Typical value is twice the round-trip propagation time.

Parameter negotiation

- This entails arriving at a common set of parameters.
- The nature and scope of parameter negotiation depends on the number of handshakes.
- In a two way handshake, negotiation is bare minimal.
- A three way handshake provides more scope for negotiation.


Call/Connection identification

- Consider the following steps:
 - An end-system 'A' sends a connection establishment request to 'B'
 - 'A' sends another request to end-system
 'B' for connection establishment
 - 'A' then receives a reply from 'B'. How does 'A' identify to which request has 'B' replied to?
- The solution is to generate a uniq_num and accompany it with every message. ©Sumit Kasera (s.kasera@mailcity.c

Finite State Machine (FSM)

- A Call goes through three phases
 - Call establishment
 - Data transfer
 - Call releasing
- The FSM accepts messages only if the message is permitted in that state.
- The state change happens when 1) a message is received from peer,
 2)Timer expires and 3) User Request.
 received from User. ©Sumit Kasera (s.kasera@mailcity.com)

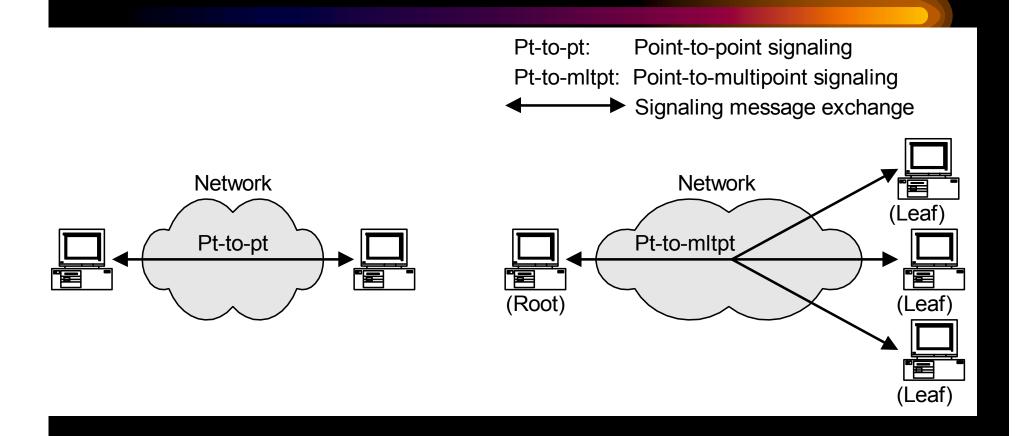
Finite State Machine (FSM) (2)

Encoding/Decoding

- Generally, messages are encoded in Type-Length-Value (TLV) format.
 - Type: Identifies the type
 - Length: Length of message (total length or length excluding the header)
 - Value: The actual contents
- Information blocks within the message may also be encoded in TLV format.

Module Name

Sub-Modules:


•Signaling Complexity

•Signaling Channels and Techniques

•Signaling Issues

•Signaling Models

Signaling Models

Point-to-Point Signaling

- Point-to-Point signaling model is used to establish and release connections between two end-points.
- The is the most common model of signaling.
- Not only is this model popular, it is also very simple to implement.

Point-to-MultiPoint (PMP) Signaling

- Point-to-MultiPoint signaling model is used to establish and release connections between a root and multiple end-points.
- This form of signaling is mainly used for multicasting or broadcasting applications (e.g., distant learning).

Starting a PMP call

- A PMP call is generally started by the root.
 - The root may take this step voluntarily,
 - Or, it may do the same after receiving an explicit request from a leaf.
 - The leaf can send the connection establishment request to the root through signaling channel or through other means.
- The first connection is established following point-to-point procedures. ©Sumit Kasera (s.kasera@mailcity.com)

Adding parties to a PMP call

- After a PMP call is established, parties are added by the root.
- The root is informed either through a signaling message, or through some 'other means'.
- Subsequent parties have no say in determining the parameters of the connection, as it has already been fixed

Dropping parties and releasing a PMP call

- A leaf of a point-to-multipoint call can drop itself out of the connection by sending a message to the root.
- It is mandatory for the root to entertain this request, and drop that particular party.
- If the root drops itself out of the connection, the whole connection is cleared.

Nature of a PMP call

- By definition, a PMP call is one in which the data flows from the root to the leaves (i.e. unidirectional in nature).
- Theoretically, nothing precludes bidirectional data-flows in PMP calls.
- However, if leaves are allowed to send data to the root, there is a multipoint-topoint connection along with the point-tomultipoint call.

Adv/Disadv of a PMP call

Advantages

+ Saving of network resources like bandwidth. The % saving depends upon the breadth and the depth of the PMP tree.

Dis-advantages

- PMP connections are difficult to establish, manage, and release.
- It is not easy for the leaves to indicate the root to start a connection.
- The unidirectional nature

The following module

Signaling

ends here